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Abstract: In forest management, it is of interest to obtain detailed inventories such that the local prediction errors on for-
est attributes are less than a prespecified threshold, while keeping the number of ground samples as low as possible. Given
an initial sampling design, we propose an algorithm to determine the additional sample locations. The algorithm relies on
two tools: geostatistical simulation, which allows measuring the uncertainty in the values of the attribute of interest, and si-
mulated annealing, which allows finding an infill design that minimizes a given objective function. The proposed approach
is applied to a data set from a Prosopis spp. plantation located in the Atacama Desert, in which the measured attribute is
the rate of tree survival.

Résumé : En gestion des forêts, il est intéressant d’obtenir des inventaires détaillés tels que les erreurs de prédiction locale
sur les variables forestières soient inférieures à un seuil prédéfini, tout en réduisant le plus possible le nombre d’échan-
tillons de terrain. Étant donné un plan d’échantillonnage initial, nous proposons un algorithme pour déterminer l’em-
placement d’échantillons supplémentaires. L’algorithme repose sur deux outils : la simulation géostatistique, qui permet de
mesurer l’incertitude sur les valeurs de la variable étudiée, et le recuit simulé, qui permet de trouver un plan d’échantil-
lonnage minimisant une fonction objectif donnée. L’approche proposée est appliquée à un jeu de données d’une plantation
de Prosopis située dans le désert d’Atacama, où la variable mesurée est le taux de survie des arbres.

Introduction

Forest inventories usually are done by predicting relevant
forest attributes on the basis of information from ground
sampling and remote sensing (aerial photographs or satellite
images) by means of statistical techniques (Loetsch et al.
1973; Burkhart et al. 1984; De Vries 1986; Husch et al.
1993; Philip 1994). Within this framework, the choice of
the sampling design is a long-standing problem that involves
budget and time constraints, measurement errors, as well as
the expected prediction errors on the attributes under consid-
eration (Cochran 1977; De Gruijter et al. 2006; Gilabert
2007; Mandallaz 2007).

Because global inventories are of little practical use in
precision forest management, it is of interest to obtain de-
tailed (local) inventories with prediction errors and confi-
dence levels similar to those required for the entire area.
Such local inventories are needed to efficiently assign buck-
ing pattern schemes, silvicultural treatments, and harvesting
machinery. In this context, our objective is to present a geo-
statistical approach to defining a cost-effective sampling de-
sign such that, at any local (within-stand) area, prediction
errors remain bounded. Such a problem is common in all
forest stand attributes for any kind of forest type, so in
global terms, the proposed approach can be extremely useful
in forestry.

The idea for this work originated during the planning
phase of a forest inventory to assess the condition of a new
plantation in Chile. According to Chilean laws, when a new
plantation is established, an incentive bonus of 75% of the
plantation cost is offered to the owners. To obtain this bo-
nus, the most important requirement is that, 1 year after ini-
tial plantation, the rate of plant survival is >75%. The
Chilean Forest Service (CONAF) verifies this requirement
by means of traditional inventory techniques and tolerates a
maximum error of 10% (with a 95% confidence) over the
mean survival rate. Because plantations have a natural spa-
tial variation and to maximize bonus recovery, owners can
divide the total area into smaller stands and discriminate be-
tween areas with less than the threshold value of 75% sur-
vival rate and areas with more than this threshold.

Data and model

Presentation of the data
The data under study consist of 738 measurements from

a Prosopis spp. plantation located in the Tamarugal pampa,
a region of the Atacama Desert, northern Chile (Fig. 1).
The measured attribute is the number of surviving trees per
hectare.

The trees were planted on a quasiregular grid with a mesh
of approximately 10 m � 10 m, and an irrigation system
was installed to water them by drip irrigation using under-
ground water. The data were collected later by sampling
plots of 60 m � 40 m in a regular array oriented north–
south and east–west with a separation of 200 m between ad-
jacent plots (Fig. 2). The coordinates of the northeastern ver-
tex of all plots were uploaded into simple frequency global
positioning system (GPS) devices to navigate to every plot
location. Because of the flatness of the Chilean altiplano
and the very favorable atmospheric conditions, the errors on
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the coordinates remained less than 2 m, therefore negligible.
In each plot (an area of 0.24 ha), the total numbers of living
and dead plants were recorded and rescaled to 1 ha. A plant
was considered living if it had at least one green leaf; other-
wise it was classified as dead, even if it had a green stem.

Geostatistical modeling
Geostatistics provides a set of tools and methods for mod-

eling the spatial distribution and variability of forest attrib-
utes and has been used in forest inventory over the past
decades (Matérn 1960; Marbeau 1976; Hock et al. 1993;
Mandallaz 2000; Nanos et al. 2004; Sales et al. 2007).

In the following, D is the domain under consideration, s is
a vector of spatial coordinates (easting and northing) in D,
and z(s) is the value of the attribute (number of surviving
trees per hectare) on a plot centered at s. Following the clas-
sical geostatistical formalism, z = {z(s), s [ D} is a regional-
ized variable (i.e., a variable that exhibits spatial continuity)
and can be interpreted as a realization of a parent random
field Z = {Z(s), s [ D}. We will characterize Z by assuming
that it can be transformed into a stationary Gaussian random
field Y = {Y(s), s [ D}, i.e., a random field whose finite di-
mensional distributions are multivariate normal and are in-
variant under spatial translation:

½1� 8s 2 D;ZðsÞ ¼ f½YðsÞ�

where f is a nondecreasing function called Gaussian ana-
morphosis (Chilès and Delfiner 1999). In practice, such a
function can be inferred empirically by constructing a
quantile–quantile transformation between the data histogram
(Fig. 2B) and the normal distribution. Details about the in-
ference and modeling of the Gaussian anamorphosis can be
found in standard geostatistical textbooks (Rivoirard 1994;
Chilès and Delfiner 1999).

The model is completed by fitting the semivariogram of
the transformed data (normal scores). In the present case,
the semivariogram model consists of a nugget effect plus
two spherical structures (Fig. 3, Table 1). One observes that
the spatial continuity (spatial correlation) is greater along
the north–south direction, as indicated by the larger range
in this direction.

Conditional simulation
Conditional simulation consists in constructing a set of

realizations of the random field Z that reproduce the values
of the attribute measured at the data locations (Chilès and
Delfiner 1999). Each realization mimics the spatial continu-
ity of the attribute and provides a scenario of how the actual
(unknown) values can be distributed in space, given the ob-

Fig. 1. Location of the study area in the Atacama Desert, northern Chile.

Fig. 2. (A) Location map and (B) histogram of available data.
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served data values. Conditional realizations are helpful to
assess the uncertainty prevailing at a given location or the
joint uncertainty over several locations.

A conditional simulation of the Gaussian random field Y
is obtained as follows (Journel 1974; Chilès and Delfiner
1999):

½2� 8s 2 D;YCSðsÞ

¼ YNCSðsÞ þ
Xn
a¼1

lajnðsÞ½YðsaÞ � YNCSðsaÞ�

where s1, s2, . . ., sn are the conditioning data locations,
l1|n(s), l2|n(s), . . ., ln|n(s) are the weights assigned to Y(s1),
Y(s2), . . ., Y(sn) when predicting Y(s) by simple kriging (i.e.,
kriging with a known mean), and YNCS is a nonconditional
simulation of Y (i.e., a simulation that is not constrained to
reproduce the values measured at the data locations). There
exist a wide variety of algorithms to construct noncondi-
tional realizations of Y (Lantuéjoul 1994). If the mean value
of Y is poorly estimated (for example, because of too few
data), one can substitute ordinary kriging (i.e., kriging with
an unknown mean) for simple kriging to obtain conditional
realizations (Journel and Huijbregts 1978; Emery 2007); in
this paper, only simple kriging will be used.

In practice, the random field Y is back-transformed to the
original unit (Z) using the anamorphosis function (eq. 1). An
illustration is given in Fig. 4.

Leave-one-out cross validation
Before addressing the sampling design problem, we will

validate the capability of the fitted geostatistical model to
measure the uncertainty in the attribute at nonsampled loca-
tions. The idea of cross validation is to model the uncer-
tainty at each data location via a probability distribution by
temporarily removing the datum at this location. The per-
formance of the uncertainty model can be assessed by exam-
ining the accuracy of probability intervals derived from the
modeled distributions (Goovaerts 2001).

Specifically, let s1, s2, . . ., sn denote the available data lo-
cations. The validation consists of the following steps:

1. For a [ {1,. . . n}, (i) perform simple kriging of the Gaus-
sian random field Y at location sa by using the normal

scores data known at the remaining locations {sb: b =

a} and obtain the kriging prediction Y*(sa) and the stan-
dard deviation s*(sa) of the kriging error and (ii) con-
struct a set of symmetric intervals with probabilities
ranging from 0.1 to 0.9. The interval with probability p
is bounded by the (1 – p)/2 and (1 + p)/2 percentiles of
the normal distribution with mean Y*(sa) and standard
deviation s*(sa). (This is a consequence of the hypoth-
esis that Y is a stationary Gaussian random field.)

2. For each p between 0.1 and 0.9, calculate the proportion,
p*, of normal scores data that belong to the correspond-
ing p intervals. This proportion is expected to match the
underlying probability p, up to reasonable statistical fluc-
tuations.

To get an idea of the acceptable deviation between p* and p,
let us assume (for the sake of simplicity) that there is no
spatial dependence. In such a case, np* is a binomial ran-
dom variable with size n and parameter p. Because n is
large (n = 738), this can be identified with a normal distri-
bution, with mean np and variance np(1 – p). Hence, the de-
viation p* – p is expected to be (in absolute value) less than
2[p(1 – p) / n]0.5 with a 95% probability.

In all cases, the deviations between p and p* (Table 2) are
low, which corroborates the goodness of the fitted model.

Sampling design problem

Statement of the problem
Given an initial sampling design, which in the following

will be taken as a subset of the available 738 samples, it is
of interest to define a design for additional samples so that
the attribute can be predicted locally with an error (in abso-
lute value) less than a prespecified threshold 3. To optimize
the sampling cost, the proposed design should contain as
few samples as possible.

Two questions will be addressed: (i) How should the ini-
tial design be defined (should it be on a regular mesh or
not)? and (ii) How many additional samples are necessary,
and where should they be placed?

Choice of prediction support and possible locations for
extra samples

Before answering the previous questions, it is of utmost
importance to define the area or support of the block (forest
stand or a portion of it) on which the prediction errors will
be evaluated. Indeed, because of the so-called support effect,
the larger that the block support is, the less the error (Chilès
and Delfiner 1999). Such an effect has long been recognized
in the geostatistical evaluation of natural resources and of
polluted sites (Journel and Huijbregts 1978; Isaaks and
Srivastava 1989).

Fig. 3. Sample and modeled semivariogram of transformed data. Table 1. Parameters of semivariogram
model for the Gaussian random field Y.

Range (m)

Type Sill N08E N908E
Nugget 0.38 — —
Spherical 0.32 3300 300
Spherical 0.30 3300 3300
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To be as conservative as possible, we will choose a sup-
port of 600 m � 1200 m, considered as the minimal stand
support targeted for prediction; the larger block dimension
along the north direction takes account of the greater con-
tinuity in this direction. One obtains a total of 40 blocks in
the domain of interest (Fig. 5). Besides, we consider a grid
with mesh 100 m � 100 m that discretizes each block into
6 � 12 points and corresponds to the set of possible loca-
tions for the additional samples.

Choice of a measure for the prediction error
A well-known measure of local prediction errors is the

kriging standard deviation, which accounts for the spatial
configuration of data locations and for the spatial correlation
(semivariogram) of the data. This measure has been widely
used in geostatistical applications to define where to place
additional samples (Delhomme 1978; McBratney and
Webster 1981; McBratney et al. 1981; Olea 1984; Barnes
1989; Gao et al. 1996; Brus and Heuvelink 2007; Lin et al.
2008). However, because it does not depend on the data val-
ues, the kriging standard deviation does not account for the
local variability of the attribute (for instance, a higher varia-
bility in subareas with lower local means) and, therefore,
does not fully reflect the uncertainty in its values.

A more informative measure of local uncertainty is ob-
tained by considering the width of an interval in which the
attribute has a given probability p to lie (Goovaerts 2001).
Such an interval is estimated by generating a large set of
conditional realizations: the interval bounds are then defined
by the (1 – p)/2 and (1 + p)/2 percentiles of the distribution
of simulated values. If one chooses the interval midpoint as
the prediction, then the absolute value of the prediction error
will be less than 3 (with probability p) if the interval width
is less than 23. In the following, we shall take p = 0.95.

Sampling design algorithm: simulated annealing
Let S0 denote the set of sample locations of the initial de-

sign, S1 the set of locations for the additional samples, and
S2 the remaining locations on the grid of possible samples.
Because of the combination of all the potential sampling
configurations (choices of S1 and S2), an exhaustive search
of the optimal design is precluded, so that one has to look
for a suboptimal approach to solve the sampling design
problem. Possible approaches include forward-selection al-
gorithms, in which sampling locations are added sequen-
tially until the required constraints are fulfilled (Lu et al.
2000), sequential exchange algorithms (Aspie and Barnes
1990), or Bayesian search theory (Freeze et al. 1992; James
and Gorelick 1994).

Another approach to determine S1 and S2 is the recourse
to a simulated annealing (SA) algorithm. SA is an iterative
device introduced by Kirkpatrick et al. (1983) to solve com-
binatorial problems and to find an approximate solution to

Fig. 4. Two realizations of the attribute (number of surviving trees per hectare) conditioned to the available data (Fig. 2A).

Table 2. Validation of the local uncertainty model (symmetric probability intervals).

Probability (p) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Data proportion (p*) 0.108 0.202 0.301 0.390 0.504 0.617 0.725 0.825 0.911
Allowable deviation between p and p* 0.022 0.029 0.034 0.036 0.037 0.036 0.034 0.029 0.022

Fig. 5. Definition of blocks targeted for local prediction (initial
samples are marked with a star).
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the optimum of a given objective function. At each step, a
candidate solution is generated by randomly perturbing the
solution obtained at the previous step and is accepted or re-
jected on the basis of the Metropolis criterion. Several appli-
cations of SA have been proposed to solve sampling design
problems with objective functions that account for a variety
of criteria (Christakos and Killam 1993; Van Groenigen et
al. 1999, 2000; Simbahan and Dobermann 2006; Brus and
Heuvelink 2007).

In the following, an SA algorithm will be proposed to
minimize an objective function, which is defined as

½3� O ¼
1 if wmax � 23

cardinalityðS1Þ þ
wmean

23
otherwise

8><
>:

where wmax and wmean are the maximal and mean widths of
the 95% probability intervals over the 40 blocks of interest
(Fig. 5). If wmax is less than 23, so is wmean; hence, the num-
ber of additional samples (cardinality of S1) is the integer
part of the objective function, which implicitly incorporates
the sampling costs. The optimal design will be the design
that contains the minimal number of samples and, at the
same time, minimizes the mean prediction error (measured
by the fraction wmean/23).

The proposed algorithm consists of the following initiali-
zation (step 1) and iteration (steps 2–9) steps (Fig. 6).

1. Find a design such that the objective function (eq. 3) is
finite. For instance, one can select one sample in S2 and
incorporate it into S1 and repeat the procedure until
wmax < 23.

2. Draw a random number U uniformly distributed on (0,1).
3. If 3U < 1, select one sample in S2 and incorporate this

sample into S1. If 1 £ 3U < 2, select one sample in S1
and incorporate it into S2. Otherwise, exchange one sam-
ple from S1 for another sample from S2.

4. Simulate L realizations of the attribute at the locations in
S1 conditionally to the data at the locations in S0. The
simulated values will supply the lack of data at the loca-
tions in S1, to compute the subsequent conditional distri-
butions and 95% probability intervals.

5. For each realization (i = 1, 2, . . ., L): (i) simulate M rea-
lizations of the attribute over the grid discretizing the
blocks of interest (Fig. 5), conditionally to the data at lo-
cations in S0 and S1 and regularize the realizations to the
block support by averaging the values simulated within
each block; (ii) for each block, use the M realizations to
compute an interval in which the attribute has a 95%
probability to lie; and (iii) calculate the maximal width
(wimax ) and the mean width (wimean) over all the blocks.

6. Calculate the overall interval widths over the L realiza-
tions:

½4a� wmax ¼ max
i[f1:::Lg

ðwi
max Þ

and

½4b� wmean ¼ mean
i2f1:::Lg

ðwi
meanÞ

7. If wmax ‡ 23, reject the design proposed in step 3 and re-
vert to the former design.

8. Otherwise, calculate the objective function (eq. 3) for the
former design (O) and for the new design (O’). Draw a
random number V uniformly distributed on (0,1) and ac-
cept the new design if the following inequality is ful-
filled:

½5� V < exp
O� O0

t

� �

where t is a positive real number called temperature.
This way, a design that decreases the objective function
is always accepted, which corresponds to a design with
fewer samples or a design with the same number of sam-
ples but a smaller value for wmean, indicating that the
mean prediction error decreases. In contrast, the designs
that increase the objective function are accepted with a
probability that depends on t. When the simulation pro-
gresses, this parameter decreases according to a logarith-
mic cooling schedule (Hajek 1988).

9. Go back to step 2 until a large number of iterations are
done.

Besides the objective function under consideration (eq. 3)
and the fact that the number of additional samples is un-
known a priori, a major difference with existing approaches
for sampling design is the coupling between simulated an-
nealing (to search for additional sample locations) and geos-
tatistical simulation (to model the uncertainty in the attribute
at these locations). The authors are not aware of other pro-
posals with such a coupling, probably because of the com-
putational difficulties it implies (Watson and Barnes 1995;
see also Implementation below). Most contributions using
geostatistical simulation are limited to the cases when the
locations of additional samples are known a priori (a cir-
cumstance that occurs in mineral resources evaluation with
blast hole samples, to assess future ore and waste misclassi-
fications, see Journel and Kyriakidis 2004), or when one
looks for a prespecified type of design, e.g., a regular or ran-
dom stratified design (Englund and Heravi 1993).

Here, our ambition is to deal with two sources of combi-
natorial problems at the same time: (i) the search of addi-
tional sample locations and (ii) the uncertainty in the values
of the attribute at these locations. The recourse to simulation
is necessary for our purposes, insofar as the probability in-
tervals calculated at step 5 explicitly depend on the values
at the locations in S1. Because these values are unknown,
the intervals cannot be calculated by nonlinear kriging meth-
ods such as indicator, disjunctive, or lognormal kriging.
Moreover, we need to determine the intervals jointly at all
the locations in S1, not separately, which again argues in fa-
vor of conditional simulation instead of kriging techniques
(Goovaerts 2001).

Implementation
Each iteration of the proposed SA algorithm calls for L �

M conditional realizations of the attribute over the grid dis-
cretizing the block shown in Fig. 5 (2880 nodes), which is
likely to be prohibitive in terms of CPU time. To speed up
the algorithm, the following stratagems are considered.

1. The L realizations needed in step 4 are calculated once,
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by simulating the attribute over the grid of possible sam-
ple locations (S1 | S2) conditionally to the original data
located at S0.

2. The M realizations needed in step 5(i) are obtained by
generating M nonconditional realizations and adding the
simple kriging of the residuals between the conditioning
data at S0 | S1 and the values of the nonconditional rea-
lizations at the same locations (eq. 2). Accordingly, for

each iteration and each of the L realizations generated at
step 4, the same set of M nonconditional realizations are
used, i.e., only L + M realizations are required in total.

3. Because the simple kriging weights only depend on the
semivariogram model and on the spatial configuration of
the data locations, a single kriging system has to be
solved to condition the L � M realizations at step 5.

4. Between one iteration and the next one, the data config-

Fig. 6. Workflow of proposed algorithm.
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uration is almost the same (only one sample is added, re-
moved, or moved). To avoid solving a full kriging sys-
tem, the simple kriging weights at a given iteration are
determined by updating the weights calculated at the for-
mer iteration (see Appendix A).

Applications
In the following, we will consider three initial sampling

designs (Fig. 7):

1. A regular design with a mesh of 400 m � 400 m, which
is obtained by retaining one-quarter of the available 738
samples (every other one along each coordinate axis).

2. A stratified random design in which the available sam-
ples are grouped into subsets of 2 � 2 contiguous sam-
ples, then one sample is selected at random in each
subset.

3. A uniform random design in which each available sam-
ple is selected with probability 0.25, independently of
the other samples.

Our idea is to apply the proposed SA algorithm to complete
these initial sampling design. This will give us an insight
into whether or not a systematic initial design is preferable
to a random design, and how many additional samples are
needed to fulfill the desired accuracy criterion (local predic-
tion errors <3).

For the particular application, the following parameters
are used: (i) L = 200 realizations, (ii) M = 20 realizations,
(iii) 3 = 10% (maximum allowable error for local predic-
tion), (iv) number of iterations = 100 000, (v) t0 (initial tem-
perature) = 2.90, and (vi) tf (final temperature) = 0.17. The
numbers of realizations L and M have been chosen so as to
accurately determine the probability intervals and to get a
reasonable number of possible scenarios for assessing uncer-
tainty. The initial temperature has been taken so that the
probability of accepting a design with one more sample is
equal to 0.7 at the beginning of the iterative process (Brus
and Heuvelink 2007); this probability decreases to 0.003 at
the end of the process.

The results (Fig. 8, Table 3) call for the following com-
ments:

1. The final number of additional samples is less when the
initial design is random than when it is regular. (This is
not coincidental; similar results have been obtained by
repeating the exercise with other initial designs.)

2. As shown by the evolution of the objective function with
the number of iterations, the proposed algorithm con-
verges faster in the case of the stratified random initial
design. However, after 100 000 iterations, the conver-
gence is reached in all the cases, and the mean width of
the 95% probability intervals is very close to the maxi-
mum allowable width (20) (Table 3).

3. The domain of interest is not evenly covered by the final
design. This is due to the fact that the uncertainty in the
values at nonsampled locations (measured by the widths
of the 95% probability intervals) depends not only on the
number of neighboring data and on their spatial config-
uration, but also on the data values (Isaaks and
Srivastava 1989). In particular, the areas where the mea-
sured values of the attribute are similar require fewer ad- F
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ditional samples than the areas where the measured va-
lues are highly dispersed.

4. Additional samples are sometimes located close together
or close to samples of the initial design, which can be
explained because of the nugget effect present in the

fitted semivariogram model (Fig. 3, Table 1). The nugget
effect indicates a lack of spatial correlation, so that
neighboring samples do not necessarily convey redun-
dant information. For this reason also, there may be
many solutions to the sample design problem.

Fig. 8. Sample locations (left) and objective functions (right) for the three initial sample designs: regular (A and B), stratified random (C
and D), and uniform random (E and F). Stars are the initial samples, and circles are additional samples.
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5. If the number of additional samples found were too large,
this would indicate that the accuracy criterion is too de-
manding. In such a case, an option would be to increase
the size of the blocks targeted for prediction (recall the
discussion on the support effect in Choice of prediction
support and possible locations for extra samples).

Although the uniform random design yields the best re-
sults in terms of additional samples, the stratified random
design offers a more homogeneous distribution of the initial
samples over the entire area (Fig. 7), which facilitates the
inference of the model parameters (Gaussian anamorphosis
and semivariogram of transformed data). Besides, the num-
bers of additional sampling units for both strategies are sim-
ilar (167 vs. 166); thus, in practice, the stratified random
design may be preferable as an initial design.

Conclusions
The objective of this work was to define a cost-effective

infill sampling design by using geostatistics. The proposed
algorithm rests upon two important methods, conditional
simulation to quantify spatial uncertainty and simulated an-
nealing to minimize an objective function, and is able to en-
sure local accuracy while keeping sampling costs as low as
possible. Compared with the original systematic sampling
consisting of 738 samples, our method reduces the sampling
costs by >50%. The algorithm is also versatile insofar as any
criterion for assessing the quality of a sampling design can
be incorporated into the objective function, e.g., criteria that
depend on economic parameters, such as sampling costs, re-
mediation costs or misclassification costs (Aspie and Barnes
1990; Englund and Heravi 1993; Christakos and Killam
1993; James and Gorelick 1994); on available secondary in-
formation (Van Groenigen et al. 2000); or on extreme value
occurrences (Watson and Barnes 1995).

The sampling design problem arises with attributes that
describe natural resources, as long as an underlying spatial
dependence law exists. In forestry, because of the relation-
ship between vegetation productivity and site condition,
such a spatial dependence is always present. Therefore, the
proposed methodology can introduce a new paradigm in for-
est and natural resource sampling and has a great potential
for the spatial prediction of descriptive variables of both nat-
ural and introduced flora and fauna.

Future studies should address the incorporation of covari-
ates, such as environmental attributes, to improve local pre-
dictions and define alternative strategies for initial sampling
design to better assess the semivariogram at short distances.
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Appendix A
For a [ {1, 2, . . ., n}, let us denote by la|n(s) the simple

kriging weight assigned to the datum located at sa when pre-
dicting an attribute at location s by using the data at loca-
tions s1, s2, . . ., sn. Consider the incorporation of a new
datum at location sn+1. The weights obtained by using n and
n + 1 data fulfill the following relationships (Emery 2009):

½A1� 8a 2 f1; 2; :::; ng; lajnðsÞ
¼ lajnþ1ðsÞ þ lnþ1jnþ1ðsÞlajnðsnþ1Þ

Let C be the variance–covariance matrix of the n + 1 data,
and B the inverse of C. Dubrule (1983) has shown the fol-
lowing identities:

½A2� 8a 2 1; 2; :::; n
� �

; lajnðsnþ1Þ ¼ �
Ba;nþ1

Bnþ1;nþ1

Accordingly, the set of kriging weights {la|n(sn+1), a = 1, 2,
. . ., n} can be obtained as soon as the last row of B (i.e.,
B�,n+1) is known, which is done by solving the following
equation:

½A3� CBt
�;nþ1 ¼ D

where D is an (n + 1) � 1 vector whose entries are equal to
0, except for the last one that is equal to 1. Equations A1–
A3 allow one to quickly update the simple kriging weights
when passing from n + 1 data to n data. Reciprocally, when
passing from n to n + 1 data according to eq. A1, the calcu-
lation of ln+1|n+1(s) is also required:

½A4� lnþ1jnþ1ðsÞ ¼ B�;nþ1C0

where C0 is the (n + 1) � 1 covariance vector between the
attribute at location s and the n + 1 data at locations s1, s2,
. . ., sn+1.
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